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ABSTRACT 

Steganography, or information hiding, is the study of methods to hide data within 

a medium. Handwritten communications, digital images, digital video and digital music 

are examples of various media in which data can be hidden. A primary application of 

steganography is the "watermarking" of digital information. Just as paper money, 

governmental documents, and even official school transcripts contain watermarks to 

prevent unauthorized reproduction, vendors seek to watermark their digital information to 

prevent piracy. 

Methods of steganography can also be used to create covert channels. A covert 

channel is a public medium used to transmit private information. Data can be embedded 

using a steganographic algorithm in order to transmit private information rather than 

authenticate ownership. Media such as image data, sound data or even the access times 

of a file, can be used as covert channels. 

Minimax algebra is known to have applications to machine scheduling, operations 

research, and image algebra. Raymond Cuninghame-Green provided the groundbreaking 

work in this area. Minimax algebra provides parallels to linear algebra by extending the 

real numbers and introducing new operations with amazing properties. Ritter and 

Sussner use minimax algebra as the mathematical foundation for a new image transform 

called the minimax eigenvalue decomposition (MED). This transform avoids 

computational difficulties encountered with other techniques used for image layering, 

compression and transmission. 
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This thesis presents research where properties of the MED transform are used to 

produce a flexible, computationally robust technique for hiding data within digital 

images. This new technique can be used to watermark an image or to convert an image 

into a covert channel. A measure is provided to determine how close an image 

containing message data is to the original image. Inherent in the technique are keys, or 

information separate from the message data stored in the image, that can establish 

authenticity of the image data, making this technique different from most steganography 

techniques that rely on embedded data integrity to establish authenticity. The technique 

is applied to ten different real images. An analysis of the results and ideas for future 

research are presented. 
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INTRODUCTION 

Throughout history, people have been concerned with the protection of 

information from unauthorized use or access. Information can be dangerous, or it can be 

helpful, depending on the intent of the user. The danger of unauthorized use or access, 

either real or perceived, has motivated people to find ways to protect or restrict either the 

distribution of information or the transaction of information from one place to another. 

However, methods of subverting restrictions and bypassing protections have emerged 

along with methods of protection and restriction. 

Steganography, cryptography, and covert channels are three techniques used both 

to protect information and to subvert restrictions on the transaction of information. 

Steganography, or "covered writing", is the art and science of hiding information within 

a medium that is not hidden. Examples of such media are digital image data, analog or 

digital sound data, and hand-written or typed text. When used to pass information, these 

media can be referred to as covert channels [1]. Digital watermarking [3], for instance, is 

an application of steganography where digital information is placed within data to allow 

an owner to verify its authenticity. Authentication [16], or the establishment of 

ownership of information by a party, is an important application of digital watermarking. 

The authenticity of information is established by either making the embedded 

information or the algorithm for inserting or removing the information unique to the 

owner. Sometimes the uniqueness of an algorithm is established through the existence of 

keys, which are specific pieces of information necessary to recover the hidden 

information that can be tied both to the owner of information and to the information 
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itself. Cryptography [16], on the other hand, is concerned with the creation and retrieval 

of scrambled infonnation. Protection from unauthorized access is dependent upon the 

strength of the algorithm used to scramble the infonnation. One use of cryptography is 

the creation and interpretation of digital signatures [16], or visible data created with the 

sole purpose of verifying the identity of a user and relating that user to a particular piece 

of infonnation, like a contract for instance. The difference between a digital signature 

and a digital watennark is a digital watennark is designed to protect the author of 

infonnation, whereas a signature is intended to protect the receiver of infonnation. The 

recipient of a document gains no advantage from the removal of a digital signature [9]. 

Steganography, cryptography, and covert channels have been used throughout 

history. In W orld War II, American prisoners of war would conceal infonnation from 

enemy censors by encoding a secret message in Morse code using the sequence of dots to 

the letter "i" and crosses to the letter "t" to communicate their message [15]. During the 

SALT II treaty talks between the United States and the U.S.S.R, an agreement was 

reached to place sensors on missile silos that would provide a count of the number of 

missiles each country had in their possession. However, the U.S. had a rotating missile 

system in their silos, used to shift the locations of their missiles, which they did not want 

revealed. Great concern was given to the analysis of those sensors for possible covert 

channels through which the U.S.S.R. could obtain infonnation regarding the locations of 

missiles [15]. Another example is found in ancient Greece, where messages were 

sometimes written on the shaved scalp of a messenger and the hair allowed to grow back 

[2]. Today, cable television signals are scrambled to allow access to paid subscribers 

with the right unscrambling equipment, and encrypted versions of passwords on 
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computer systems are stored instead of actual passwords to protect from hackers who 

may gain unauthorized access to the file. 

In recent times, methods have been developed for commercial use to protect 

information. One method of steganography for images breaks an image into rectangles of 

pixels, embedding a mark or information in particular rectangles that follow the detail of 

the image [7]. A method of steganography for sound spreads info across frequencies of 

music data and uses that information to identify the owner of a musical selection [6]. A 

method called Patchwork [2] takes advantage of statistical properties of an image by 

embedding an imperceptible, specific statistic (one that has a Gaussian distribution) 

within a digital image. Another method takes the frequency transfonn of an image, 

imbeds a watermark, and performs the inverse frequency transform to produce an image 

containing hidden data [3]. 

Researchers are searching for steganography techniques that can provide self­

authentication. Self-authentication is the ability of data to be authenticated without third 

party intervention. Np method of steganography has been found to provide self­

authentication. In other words, no method exists that cannot be rendered useless either by 

corrupting embedded data or by placing a second mark over an already embedded mark, 

making the first mark unreadable. These attacks are thwarted by the existence of third 

parties that can verify the previous existence of a mark. However, methods used by third 

party companies like Digimarc©, ARIS Technologies©, and MediaSec Technologies 

LLC© do not claim to be self-authentication methods, as no method has yet to be proven 

to be such. 
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Along with steganography and cryptography, covert channels and their analysis 

have found applications in computer systems. The Orange Book is a governmental 

publication that gives guidelines for evaluating the security of computer systems. In 

order for a system to be classified as an Al system, which is the highest classification 

level for any system, there must be a formal analysis of the potential for covert 

communications in the system. To see how easily covert communication can be 

achieved, we consider an example given in [10]. Suppose two people, High and Low, of 

different security levels, each have access to an interactive chess game. Furthermore, 

suppose that if Low plays by himself, the response time is Ims, an if Low plays with 

someone, the response time is 2ms. High can time when he plays with Low and when he 

doesn't, assuming that Low plays continually of course, to create a two letter alphabet 

through which he can communicate with Low. The first letter would be the 1 ms response 

time, and the second letter would be the 2ms response time. However, according to the 

*-property of the Bell-Lapadula security model [14], a person or entity ofa certain 

security clearance cannot communicate information to a person or an entity of a lower 

security clearance. Therefore, if this communication were allowed to take place, a breach 

in the security policy of the system would result. 

The type of channel discussed above is called a timing channel. Another type of 

channel is a storage channel. A storage channel is used to send information to a receiver, 

where the receiver samples data at certain time intervals or spatial locations agreed upon 

previously. The person receiving the communication doesn't necessarily know the 

message he or she will receive, but he or she knows the message has to be complete by 

the time the communication is complete. A stream cover is a storage channel where a 
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continuous data stream is used as a medium of communication [1]. Samples of the data 

are used to represent the message. Digital sound data, for example, can be used as a 

stream cover. A stream cover, however, cannot be used if the recipient wants to access 

the hidden data at will. A random access cover is a storage channel where the message 

can be accessed at will. An example of a random access cover is a frame on a Kodak 

Photo CD [18]. A frame's maximum resolution is 2048 by 3072 pixels, with each pixel 

containing 24 bits of information. By using only the least significant bit of each pixel to 

store a 0 or 1, a 2.3 megabyte message can be hidden in a single picture. 

This thesis focuses on hiding information within digital images. The method uses 

a radical image transform called the Minimax Eigenvalue Decomposition (MED), which 

decomposes an image into layers without the computational and roundoff penalties 

encountered in the Singular Value Decomposition (SVD) [12]. The SVD is well­

documented in matrix and image algebra literature, and is known to be computationally 

intensive due to the difficulty of computing eigenvalues and eigenvectors. The MED 

transform avoids these difficulties. This thesis utilizes the MED transform by combining 

message data and a subset of the layers produced by the transform to create an image that 

is "close" to the original image. The algorithm for the combining of the data and the 

selected layers yields keys useful for authenticating an image, even if the embedded data 

is tampered with. 

This algorithm is believed to be weak if an image is to be used as a covert 

channel. However, this algorithm is believed to be strong if one wants to prove 

ownership of an image. Because the keys produced by the algorithm are not dependent 

on the data stored by the algorithm, authentication can be accomplished even if the data is 
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tampered with, provided a trusted record of the keys exists. Although gray-value images 

are used in this thesis, the algorithm is based on a matrix transform, making it useful for 

any image converted into a matrix of pixel values, including color images. The amount 

of space available for storing a hidden message using this algorithm is dependent on the 

image used and the data stored. 

Chapter 1 focuses on definitions and mathematical preliminaries necessary to 

describe the MED transform and the steganography concepts. Chapter 2 contains the 

discussion of the transform and its comparison to the SVD method. Chapter 3 contains 

the proof that motivated the data-hiding algorithm as well as the data-hiding algorithm 

itself. Chapter 4 contains examples of images processed by the algorithm. Chapter 5 

contains an analysis and discussion of the results, and conclusions and ideas for future 

research with this algorithm conclude the thesis. 
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CHAPTER 1: PRELIMINARIES AND DEFINITIONS 

Minimax algebra serves as the mathematical foundation for this thesis, and [4] 

provides the groundbreaking work in the area. Initially applied towards job scheduling, 

this field of mathematics has been applied to the area of image algebra as well. 

Presented here are results from minimax algebra that are relevant to this thesis. Although 

the mathematics is not necessary to perform the algorithm, it is necessary for 

understanding how the algorithm works. This chapter contains a short presentation of 

definitions in steganography, and a brief introduction to minimax algebra. 

Authentication: 

Attack: 

Message data or Mark: 

Stego image: 

Key: 

Covert channel: 

1.1 Steganography terminology 

Establishment of ownership of information. Information is 

authenticated if it can be proven to have originated from a 

particular source. 

Any manipulation of a medium that seeks to either destroy 

the information stored in that medium or the ability to 

authenticate the medium. 

Data stored within or passed via a digital medium. An 

image is an example of such a medium. 

An image containing message data. 

Information used to either retrieve data from a stego image 

or to authenticate an image. 

A public medium used to communicate private information 
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between parties. Sound data, image data, or even chess games, as discussed in the 

Introduction, are examples of media used as covert channels. 

1.2 Minimax algebra: An introduction 

Minimax algebra is a matrix-structured algebra that manipulates matrices and 

vectors with algebraic operations that are similar to but distinct from regular linear 

algebra. The general idea of minimax algebra is as follows. Take the usual linear algebra 

operation of matrix-matrix multiply: 

n 

Cij = Laikbkj, 
k=l 

where A = {aij} and B = {bij} are appropriately sized matrices. Now, replace the 

multiplication operation with addition, and replace the sum operation with a maximum 

operation, to get 

n 

Cij = V (aik + bkj). (1) 
k=l 

This yields a matrix 

A 

C = {Cij} 

which is in general much different from C = {Cij}. The example given in Eq. (1) is a 

particular case that occurs in minimax algebra, and will be used in this thesis. This 

matrix algebra, when endowed with appropriate properties, produces a rich matrix 

structure which has continued concepts of eigenValues and eigenvectors, solutions to 
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systems of equations, matrix rank, spectral inequalities, and many other concepts parallel 

to those found in linear algebra. 

We shall give only a brief introduction to minimax algebra as concerns the 

concepts in this thesis, and refer the reader to [4], [11], and [12] for further details. 

A semigroup is defined as a set S with an operation EB such that the following two 

properties hold: 

G 1: x EB (y EB z) = (x EB y) ffi z V x, y, Z E S 

G2: x ffi y = y ffi x V x, YES 

provided, of course, that S is closed under ffi. 

(associativity) 

(commutativity) 

A semiring is defined as a semigroup (S,ffi) with an additional operation ® 

satisfying the following properties: 

Rl: x ® (y ® z) = (x ® y) ® z V x, y, Z E S 

R2: x ® (y ffi z) = (x ® y) ffi (x ® z) V x, y, Z E S 

~: (yffi~®x=(y®~ffi~®~V~~ZE~ 

(associativity of ®) 

(left distributivity of ®) 

(right distributivity of ®) 

Let Mm x n(S) be the set of m x n matrices whose entries are from S. The set 

Mm x n (S) with the operation ffi is a semi group as well, with ffi being defined in the 

following way: 

A ffi B = {cij} mxn, where cij = aij ffi bij, ViE {L.m },j E {L.n}. (2) 

(S, ®) may be a semigroup as well; in which case, (Mmxn (S), ®) is also a semigroup with 

® being defined by replacing ffi in Eq. (2) with ®. 

A matrix product ~ can also be defined in the following way: 

~: Mmxk(S) x Mkxn (S) ~ Mmxn (S), and A ~ = C, for A E Mmxk (S), 
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BE Mkxrn(S),andC E Mrnxn(S), where 

k 
Cij = r/=1 (ail $ bu) = (ail $ blj) ® ... ® (aik $ bkj). 

If S = R, $ = x, ®= +, we have matrix multiplication as in linear algebra: 

k 
Cij = L,=I ail x bu. 

Let us denote the set R u {-oo} as R-oo and the set R u {+oo} as R+a:>. Furthennore, let us 

define the operations +, +', v and A as follows: 

{
a+b, a,b E R 

a+b= 
- 00, a = -00 or b = -00 

, {a+b, a,b E R 
a+ b= 

+ 00, a = +00 or b = +00 

{
a, if a ~ b 

avb= 
b, otherwise. 

{
a, if a 5: b 

aAb= 
b, otherwise. 

Call a v b the max operation, and call a A b the min operation. 

If S = R-oo, $ = +, ® = v, then ~ 11 and the matrix product above takes the fonn: 

AGB = C, where 

k 
Cij = V/=I ail + bu = (ail + blj) v ... v (aik + bkj). 

We call this product a max product. 
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Similarly, if S = R+a>, e = +', ® = A, then ~ ~ and the matrix product above 

takes the form: 

AUB=C,where 

Cij = /\;=1 ail +' blj = (ail +' bl}) A ... A (aile +' bk}). 

We call this product a min product. 

Note: Boxes will be put around any special matrix operations, and will be left off of 

pointwise operations. 

Furthermore, define A- as the negative transpose of A. That is, if A = {aij}, then 

A* = {aij-} , where aij- = -aji. The negative transpose of A will be essential to calculating 

the MED transform ofA. 

Let us define pointwise image addition, subtraction, mUltiplication, max, and min 

of two images A = {aij} and B == {bij}as follows, reiterating the note above. 

A + B = C = {cij}, cij = aij + bij, 

A - B = C = {Cij} , cij = aij - bij, 

A * B =C= {Cij} , cij=aij * bij, 

A vB = C = {cij}, cij = aij v bij, 

A A B = C = {Cij} , cij = aij A bij. 

Finally, let us define the indicator threshold T of A and the indicator threshold 

image X~T(A) as follows: 

x ~ T(A) = C = {cij},cij = {~ if aij ~ T 

otherwise. 

These notations are used to describe the storage algorithm. 
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The semirings (L, v, +) and (R+oo, 1\, +') can be combined into what is known as 

the bounded lattice ordered group (BLDG) (R±oo, v, 1\, +, +'), where R±oo = R U {-oo, 

+oo}, and each operation is as defined above, resulting in a minimax algebra. 

BLOGs have rich and interesting properties with a wide variety of applications. 

This thesis does not come close to exploring the numerous applications of minimax 

algebra to the areas of scheduling theory and image algebra ([4], [5]). This thesis 

provides another contribution to the area and more attention to the area's potential. 
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CHAPTER 2: MINIMAX EIGENVALUE DECOMPOSITION (MED) 

Dividing an image into layers for transmission or storage purposes is not new. 

The singular value decomposition (SVD) is well known, and has been used for this when 

applicable. The SVD, however, has computational difficulties that cannot always be 

overcome if accuracy or computational efficiency is a concern. In [12] there is an 

alternative to those computational difficulties through the use of a radical, new transform: 

the minimax eigenvalue decomposition (MED). Much of the mathematical foundations 

for the MED can be found in [4], and discussions to image processing applications can be 

found in [5], [11], and [17]. 

A discussion of the MED transform is presented and compared to the SVD of a 

matrix. The discussion of the SVD is used first as an example of familiar material before 

we move into the unfamiliar territory of the MED. The MED discussion is a presentation 

of work done in [12]. 

2.1 The SVD transform 

The singular value decomposition (SVD) of A, a real-valued, m x n matrix (m~), 

provides a method for representing a matrix A as the product of three matrices as follows: 

A=UDV, U, V orthogonal m x m and n x n matrices, respectively, and 

dl 0 0 0 0 

0 d2 0 0 0 

D= 0 0 0 0 dn , 

0 0 0 0 0 

0 0 0 0 0 
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where d} through dn are the square roots of the eigenvalues of the matrix AlA, or the 

singular values of A. Furthermore, these singular values are ordered such that 

The n columns of U, denoted u l
, .,. , un, are the eigenvectors of AAI, and the column 

vectors Vi through Vo of V are the eigenvectors of AlA. 

The SVD has a well-known application to image compression and transmission. 

The matrix A can be written as 

,. 
A = Ld,Ui(Vi)" 

;=1 

where r represents the rank of D and (Vi)t denotes the transpose of the vector vi. Image 

compression can be achieved due to the fact that 

k 

A ~ Ld,Ui(Vi)' 
;=/ 

where k «r. This allows us to store or transmit only the set 

{ . .}k 
d;,u', v' ;=1 

if we want to represent the image with less data. 

2.2 The MED transform 

An element A. e R±a:> is a minimax eigenvalue of A with corresponding eigenvector 

ABx=A.+x. 
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Here, J... + x == (J... + XI, J... + X2, ••• ,J... + xm), where x = (XI, X2, .•• ,xm), and A e 

Now, the matrix U = A 6 A* has been proven [4] to have the property that each 

column of A is an eigenvector of U corresponding to eigenvalue O. In other words, UB a i 

= ai, where ai represents the i-th column of A, and hence UB A = A. 

The MED of an m x m matrix A can be written as 

A= UBDB V, 

where V=At , 

dl -00 -00 

-00 d2 -00 
D= 

-00 -00 dm 

and dl = d2 = .,. = dm = O. 

This transform avoids inaccuracies in eigenvalue computation since every 

eigenvalue is zero. 

Furthermore, we can represent A as a composition of the matrices ui B (Viy: 

m do i r:-:l( i)t m i r::l i t 
A = Vi=1 1+ u L:.J v = V i=1 u ~(v ) , 

where (Vi)t= ai, if ai represents the i-th row of A. Hence, the above equation changes to: 
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We call each u i B ai matrix a layer of A. Each u i B ai pair is an m x m matrix, and the 

pointwise max operation of all m layers is equivalent to the original m x m matrix A. 

These are analagous to the diUi(V
i
)' elements in the SVD transform discussion. We shall 

call these elements layers as well. 

In the SVD transform, it is trivial to obtain the best approximating subset of k 

layers for a given k ~ n after the difficult task of obtaining the eigenvalues and 

eigenvectors has been accomplished. In the MED transform, there is no eigenvalue 

computation since they are all zero, and the U matrix computation is trivial. The 

determination of a set of the k best approximating layers for a given k, however, is not 

trivial. The measure that follows provides the basis for finding k best layers. Hence, the 

accuracy of reproduction is not a concern. The following algorithm is discussed in [12]. 

Define a measure s(A,B) as follows: 

s(A, B) = LLCij, where 
; j 

{
aij - bij, aij > bij, 

Cij = 0 otherwise. 

Now, for the ordering process, we have this algorithm: 

Ordering algorithm 

1) Find u
j B aj = min(s(A, u

j B aj), 1 ~ i ~ m). Name this pair u· and a •. 

2) Suppose you have found the first} (j;::: 1) eigenvector pairs. Now, find ucr and acr 

such that: 
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Rename this pair as uj
+

1 and aj+l. Furthermore, let us define Aj as follows: 

We callAj thejth reconstruction ofA. 

3) Set j = j + 1 and repeat steps 2 and 3 until j = m. 

In addition, it is straightforward to show that 

for eachj = 1, ... , m. This information is crucial in producing our stegoimage, as we will 

see in Chapter 3. The next example illustrates the process discussed above. 

2.3 Example 1: Layer computation 

Define a matrix A as follows: 

8 4 20 47 3 

6 56 48 0 8 

A= 27 88 13 97 65 . 

77 17 0 0 39 

53 17 47 67 0 

Then, we compute the U1Bal layer as follows: 

-8 -6 -27 -77 -53 

-4 -56 -88 -17 -17 
* A = -20 -48 -13 0 -47 , 

-47 0 -97 0 -67 

-3 -8 -65 -39 0 
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0 -52 -84 -69 -45 

-47 0 -97 -71 -67 

u= -7 -35 0 -50 -34 ,and 

-47 -48 -97 0 -67 

-3 -39 -71 -39 0 

0 8 4 20 47 

-47 -39 -43 -27 0 

u1Gal= -7 0(8 4 20 47 3)= 1 -3 13 40 

-47 -39 -43 -27 0 

-3 5 1 17 44 

Now, if we compute a115layers, and then compute the measure in step 1 of our algorithm 

above for each layer, we get these results: 

seA, U1Bal) = 917 

seA, U~2) = 1087 

seA, U~3) = 1102 

seA, Ut1a4) = 1287 

seA, u12Jas) = 952. 

Therefore, U1Bal would be our ucrlBacrl' or our AI. Proceeding on with step 2 of our 

algorithm, we find: 

S(U1Bah AI) = 0 

s(u~2,AI) = 393 

S(U11a3, AI) = 351 

3 

-44 

-4 . 

-44 

0 
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s(uBas, AI) = 199 

19 

A2 = (uO"I @aO"l)v (u0"2 @a0"2) = 

8 
6 

27 
77 
38 

4 
-43 
-3 
17 
1 

20 47 3 
-27 0 -32 
13 40 -4 
0 0 39 

17 44 0 

If we repeat this process 3 more times, we will find that As is indeed equivalent to our 

original matrix. 

Note that, for any ui B ai pair included in the Aj calculation, the s measure 

calculation between it and Aj must be zero. This is due to the fact that every element in Aj 

is greater than or equal to the corresponding element in the ui B ai matrix. Hence, since 

step 2 looks for the maximum measure between the ui B ai matrices and Aj for a particular 

n, duplication of layers found in this calculation is not a concern unless all the measure 

results equate to O. If all the measure calculations in step 2 equate to 0, we are done, 

understanding that this reconstruction is equivalent to the original matrix. 

Our focus will not be on simply reconstructing images. We want to store data 

within the reconstructions. The theorem discovered and proven in the next section 

provides a method to measure just how much space each reconstruction provides for data 

storage. 
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CHAPTER 3: PRODUCING A STEGOIMAGE 

We now present the algorithm for producing a stego image. First, a theorem is 

presented that provides the foundation for the algorithm. Then, a general storage 

algorithm is presented that stores the message data within the image, producing a stego 

image. 

3.1 Theorem 

This theorem is instrumental in providing the user with a way to determine which 

pixel locations in the image can be used to store message data. We will use this theorem 

to aid in defense against attacks as well. 

Theorem: Let A be an m x m matrix. Let Aj be the jth reconstruction of A. 

Then, Aj will contain at leastj rows of A. More specifically, ifthejth reconstruction of A 

IS 

rows tJ, t2, ... tj of A. 

In other words, we can track precisely where we have locations available for 

storage. Since Ai::;A (from Section 2.2), and we know that at least thej rows tl .... ,tj of Ai 

are exactly the same as the j rows tl .... ,tj of A, the remaining m-j rows of Ai potentially 

have individual pixel values that are less than or equal to A (since Ai::; A). It is in these 

m-j rows that the storage algorithm, presented in Section 3.3, will try to hide the message 

data. 
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Proof Let U={ uij },A={ aij}, andA*={ (a*)ij}. Then, because 

U=A 6A*, uij = min{ a;k + (a*)kj. 1 ~ k ~ m}, where (a*}Ig is the element in the kth row 

andjth column of A*. Now, Ujj = min{ a;k + (a*)ki' 1 ~ k ~ m}. But (a*)k; = - a;k. 

Therefore, Ujj = 0 for all i between 1 and m. Now, let Uk B ak = {(bk) ij}. This means that 

(bk) ij = U;k + akj for all i,j, k between 1 and m. Now, the kth row of Uk B ak contains the 

elements (bk) kj = Ukk + akj, 1 ~ j ~ m. But, since Ukk = 0 for all k, (bk) kj = akj for all j. This 

means that the kth row of uk B ak is equivalent to the kth row of A. Now, the element 

contained in the kth row and jth column in un Ban, n *" k, is (bn) kj = Ukn + anj. This means 

that (bn) kj = ak;y + (a*)vn + anj for some v corresponding to that element. Ifwe can show 

that (bn) kj ~ akj for any j, we can show that the kth row of un B an is, per element, always 

less than or equal to the kth row of Uk B ak. This is trivial, seeing as ak;y + (a *)vn + anj ~ akj 

+ (a*)jn + anj ~ akj for any j due to the 6 operation. This means that, if you perform the 

operation (Uk B ak) v (Un B an), both the kth and nth rows of this matrix will be 

equivalent to the kth and nth rows of A, since (bk
) kj = akj V j from above. Furthermore, 

no other elements in this matrix will be greater than the corresponding element in A 

because no other elements in either Uk B ak or Un B an are greater than the corresponding 

elements in A. Since this argument can be extended to any max sum of the form 

(utI B all) v (ut2 B a t2) v ... V (utn B atn), 

where it can be shown that this sum will produce a matrix that contains at least rows t), t2, 

... tn of A, we have successfully proven our theorem. 
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We saw in Example 1 that A2 contained rows 1 and 4 of A. In that example, A2 

contained only those rows of A because the layers used to create A2 only contained those 

rows of A. However, if we look at the next example, we find a different result. This 

means that it is possible to have more rows of A included in the reconstruction than the tt, 

... to rows from utI B atI' ... uto B a to' This information is important to us. The more 

rows included from A, the less space there is to store data according to the algorithm that 

follows. 

3.2 Example 2: All rows included in all layers 

1 2 3 4 5 
6 7 8 9 10 

LetA = 11 12 13 14 15 . Then, 

16 17 18 19 20 
21 22 23 24 25 

-1 -6 -11 -16 -21 

-2 -7 -12 -17 -22 
A*= -3 -8 -13 -18 -23 ,and 

-4 -9 -14 -19 -24 
-5 -10 -15 -20 '-25 

0 -5 -10 -15 -20 

5 0 -5 -10 -15 

u= 10 5 0 -5 -10. 

15 10 5 0 -5 
20 15 10 5 0 
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But this means that: 

0 1 2 3 4 5 

5 6 7 8 9 10 

ul [YJal = 10 E1(1 2 3 4 5)= 11 12 13 14 15 =A! 

15 16 17 18 19 20 

20 21 22 23 24 25 

The same is true for all the layers Uk [YJ ak, k E { 1 ... 5} . 

An explanation of this peculiar example can be found in [17], where rank of a matrix is 

defined. The rank of A above is 1, and thus any pair Uk B ak, k E {I, ... ,5}, will satisfy 

ukB ak =A. 

3.3 Storing message data within an image file 

This section describes the storage algorithm for hiding data within an image 

reconstruction Aj • The particular storage algorithm we use traverses the set of appropriate 

rows in a raster-scan order to hide the data, that is, in a left-to-right order in the row, rows 

top to bottom in the image. The presentation of the general algorithm assumes a raster­

scan order of traversal. However, any order of traversal is possible as long as the order 

can be recreated, so that the message data can be extracted properly. 

We simulated message data by producing a string of Os and 1 s that was generated 

uniformly and randomly using the randO function in C. This string simulates a well-
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encrypted message that we may want to hide in an image. From cryptology, we know 

that encrypting an original message into one that has a uniform distribution of symbols 

makes it more difficult to decrypt the scrambled message. We assume that the message 

to be stored in the image is encrypted in such a manner because it provides an additional 

layer of security against possible attacks on the stego image. 

This storage algorithm reads bits from a data file and adds them using integer 

addition to the pixel values at certain locations in the reconstruction image Aj , thereby 

creating a new image that hopefully is close to the original. This new image is the stego 

image. The pixel locations are chosen from certain rows of the images selected in the 

storage algorithm as described below. We also describe a measure that we use to 

evaluate how close the stego image is to the original image. 

The main idea of the storage algorithm is to place pieces of the message data at 

these pixel locations in Aj where Aj is strictly less than the original image A. Recall that 

Aj ~ A pointwise, although it is possible that Aj = A; see Example 2 in Section 3.2. By the 

theorem in Section 3.1, we know that the reconstructed image Aj will have at least j rows 

in it that are exactly equal to the correspondingj rows in the original image A. It is in the 

remaining m-j rows that Aj may be strictly less than A, and the storage algorithm searches 

those m-j rows. 

In the description of the storage algorithm, we let rI, r2, ... rm-j label the m-j row 

numbers of A that are not used in the reconstructed image Aj • Denote an element in row 

rn and column k of Aj by (aj)r~, and denote an element in in row rn and column k of A by 

ar~. Then by the Theorem, it is possible that (aj)r~ is strictly less than ar~. 
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Storage algorithm 

1) Take an image A and compute Aj for some j. 

2) Compute the image 

The indicator threshold is T = 0, and thus the image A/ = {(aj +)hk} "zeroes out" 

the negative values in Aj • 

3) Next compute the image 

B=A -A/. 

Thus, B = {bhk}, where 

{

ahk - (aj)hk 
bhk = 

ahk 

4) Compute the image C == {Chk}, where 

if (aj)hk ~ 0 

if (aj)hk < o. 

Chk = number of bits needed to represent bhk. 

Note that if A has 255 gray values, then 0 ~ Chk ~ 8 for all h and k. 

5) Let D == C * X~o(C - 1). Thus D = {dhk} satisfies 

{

Chk -1 
dhk= o 

if chk ~ 1 

if chk = o. 

The image D represents the number of bits from the message datafile that will be 

stored in the corresponding pixel location in the image A/. We have chosen to 

store one fewer bit per location than the maximum possible, for reasons discussed 

below. Thus, for example, if doo = 5, then 5 bits from the message datafile will be 
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stored (by integer addition) at location (0,0) in A/. From the Theorem, we know 

that nonzero values in D can only exist in rows r), r2, ... rm-j of D. 

6) Using a raster-scan order, we start at row r., and we fmd the first entry dr1k where 

dr1k ~ 1. Then, the first dr1k bits are pulled off of the message datafile, and we 

compute 

where Pr1k is the base-l0 representation of the first dr1k bits in the image file. The 

image As = {(as)hk} is the stego image. Then, the next entry dr1m where dr1m ~ 1 is 

found, and the next dr1m bits are pulled off of the message datafile, translated into 

a base-l 0 representation, and added to (aj +)r 1m• This process is repeated for all the 

entries in all of the rows r), r2, .. , rm-j of D and A/, until either the entire message 

datafile is stored, or we have traversed all available locations in the m-j rows for 

storage. If we run out of data, or if drnk = 0 for some n e {I ... m-j}, k e { 1 .. _m}, 

then 

That is, the steo image takes on the values of the original image at those particular 

locations. 

{

(as)rgk, 
(as)hk = 

ahk 

We call As the stego image. 

if h=rg,ge{I,2,m-j} 

otherwise. 
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Figure 3.1 gives a pictorial overview of the storage algorithm. We chose to store 

one less bit of information per appropriate pixel location than the maximum possible to 

avoid having to re-scale the stego image As after the procedure was completed. For 

example, if ahk = 250, and (aj +)hk = 230, then bhk = 250 - 230 = 20, and Chk = 5, since it 

takes 5 binary bits to store the decimal number 20. We could then chose to store the next 

5 bits from our message file at location (h,k) of A/. However, if the next 5 bits that were 

available in the message file were 111002 (the number 28 in base 10), then (as)hk = 230 + 

28 = 258> 255. Since we are representing As by 8 bits only, we would have to re-scale 

As to ensure that pixel values fall within this range. Re-scaling could also change the 

visual appearance of As significantly. Reducing the number of bits stored by one avoids 

this situation. Since we want to make As visually close to A and preserve data integrity, 

we want to avoid re-scaling. 

~ L-
6 bits .................. I 

""1---

ark n 

6 - 1 = 5 bits 

.. 01l0ij 011101 00101011. .. 

TOW Tn ~ 

column k 

Figure 3.1. Picture of storage algorithm. 
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We work with A/ instead of Aj to avoid re-scaling as well. If, for example, ahk = 31, and 

(aj)hk = -31, then ahk - (aj)hk = 62 = 1111102• This would mean that dhk = 6 - 1 = 5. The 

next 5 bits from the datafile could range from the decimal values 0 to 31. However, this 

would mean that (as)hk could only range from -31 + 0 = -31 to -31 + 31 = 0, in which 

case it is most probable that (as)hk would contain a negative value to re-scale. 

We also remark that a different order of visiting the sites marked for storage 

besides a raster-scan (corresponding to nonzero locations in D) will result in a different 

stego image As. 

We define a measure between two images A and F as follows: 

m-j m 
'" -I "'k_Iarnk-(!)rnk 

m(A, F) = £.In- £.J - • 
(m- j)xm 

Here, Fis an image oftypeAj (reconstruction) or As (stego). This measures the average 

difference per location used for storage between the original image and the image F. 

This is one measure we will use to determine how "close" our stego image is to our 

original image. The measure takes the differences between the image F and the original 

image at each matrix location, sums them, and divides the sum by the total number of 

elements in all valid rows. The closer the measure is to 0, the closer the image F is to our 

original image. Next we look at A and A2 from Example 1. 
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3.4 Example 3: Storage algorithm applied to an image 

8 4 20 47 3 8 4 20 47 3 

6 56 48 0 8 6 -43 -27 0 -32 

A= 27 88 13 97 65 Az= 27 -3 13 40 -4 

77 17 0 0 39 77 17 0 0 39 

53 17 47 67 0 38 1 17 44 0 

8 4 20 47 3 0 0 0 0 0 

6 0 0 0 0 0 56 48 0 8 

A; = 27 0 13 40 0 B= 0 88 0 57 65 

77 17 0 0 39 0 0 0 0 0 

38 1 17 44 0 15 16 30 23 0 

0 0 0 0 0 0 0 0 0 0 

0 6 6 0 4 0 5 5 0 3 

c= 0 7 0 6 7 D= 0 6 0 5 6 

0 0 0 0 0 0 0 0 0 0 

4 5 5 5 0 3 4 4 4 0 

8 4 20 47 3 

6 o + 5 data bits 0+5 data bits 0 0+3 data bits 

As= 27 0+ 6 data bits 13 40 + 5 data bits 0+6data bits. 

77 17 0 0 39 

38 + 3 data bits 1 + 4 data bits 17 + 4 data bits 44 + 4 data bits 0 

The three rows available for storing message data are r} = 2, r2 = 3, and r3 = 5. Using a 

raster-scan visiting order, the first valid location to check for possible storage of data is 

the (1,1) location of A2, as d)) = 5. We would then read off5 bits from our datafile, and 
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add the base 10 representation of those bits to (a/)lI to create (as)ll. We would follow 

similar procedures to find (as)l2, (as)14, (as)2I. (as)23, (as)24, (as)so, (as)SI. (as)s2, and (as)S3, 

until we either run out of bits to read or each of these locations has been visited. Ifwe 

run out of bits, we fill the remaining pixel locations with the original image pixel values 

at those locations. 

3.5 Extracting data from the stego image 

Here we give a short description on how to recover data from a stego image. 

In brief, the process above is inverted. The receiver of As will need to know A and 

the reconstruction value j, as well as the traversal order followed when the message data 

was originally inserted into A/. The receiver computesA/, knowing A andj, and 

computes the image D, following the procedure outlined in Section 3.3. Then the 

receiver pulls off the number of bits dhk from each location (h,k) at the corresponding 

locations in As. Thus, for each (h,k) where dhk'¢ 0, the value (as)hk - (aj +)hk is computed, 

and (as)hk - (aj +)hk will be represented by dhk bits. The bits are pulled off in the traversal 

order used to insert them, and the message data file consists of the bit string created by 

stringing those bits together in that order. Then decrypting of the message is performed if 

needed. 
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CHAPTER 4: RESULTS 

In this chapter we present the results of applying the storage algorithm given in 

Chapter 3 to ten different images. The images were obtained from web sites, and a wide 

variety of images were selected. We chose to set j = 125 for each of the seven images, 

although the (square) image sizes varied from 149 x 149 to 326 x 326. We chosej = 125 

arbitrarily. The space available to hide data increases as j decreases. However, the 

smaller the value for j, the higher the possibility for error as less of the original image 

will be included within the reconstruction image Aj • The size of each image, the level of 

reconstruction, the number of locations available for storage, the difference measure base 

10, the difference measure in bits, and the average LJ error over the storage locations are 

included for each image in Table 4.1. The average LJ error is computed over the number 

of storage locations only (not over (m-j) * m locations). The difference measure in the 5th 

column provides a value representing the average difference between the stego image and 

the original image per pixel location used to store message data. Figures 4.1 to 4.10 

contain images to which the algorithm was applied. Each figure can be found in [19]. 
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Table 4.1: Image information 

Images Size J # stor. # bits #bitsl Diff. Diff. LJ error 
Ictns. stored Ictn. meas. Meas. over 

(bits) storage 
Ictn. 

Figure 4.1 149 x 149 125 2395 9481 3.96 5.78 2.53 8.63 
Figure 4.2 150 x 150 125 2750 11911 4.33 8.43 3.07 11.49 
Figure 4.3 165 x 165 125 4711 14982 3.18 3.96 1.98 5.54 
Figure 4.4 169 x 169 125 5014 15314 3.05 3.49 1.80 5.17 
Figure 4.5 171x171 125 5805 19063 3.28 4.04 2.01 5.47 
Figure 4.6 178 x 178 125 1749 2297 1.31 0.228 -2.13 1.22 
Figure 4.7 195 x 195 125 9902 39828 4.02 10.8 3.43 14.89 
Figure 4.8 215x215 125 11556 37461 3.24 3.59 1.84 6.01 
Figure 4.9 263 x 263 125 28762 107686 3.74 7.30 2.86 9.21 

Figure 4.10 326 x 326 125 58073 230084 3.96 9 .02 3.17 10.18 

a. Original image. b. Stego image. 

Figure 4.1. Basketball player 1. 

a. Original image. b. Stego image. 

Figure 4.2. Basketball player 2. 
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a. Original image. h. Stego image. 

Figure 4.3. Old man in shack. 

a. Original image. h. Stego image. 

Figure 4.4. Room with people. 

~.;~ · l·t', 
,... " ',' f 

~. '1:' .•. · .. · .. l4 ... ·.!.~.i '~ .. ~ •.•. . :.i,:J.,,· '. ~'.' ...•.. ""c.,'. - '-. , ;;' .. 'ie.. 
~ . ' 1 -...;.,. .. 

.-" i,.J.~. '; .' . • 3 .. ".' ...... ". '~ ........ . r ··t,.-'" 1'--... 
,'- ~ 

. ,=a 
!' F 

r-~~ J 
a. Original image. h. Stego image. 

Figure 4.5. T ekken 3 logo. 



www.manaraa.com

34 

a. Original image. h. Stego image. 

Figure 4.6. Beach. 

a. Original image. h. Stego image. 

Figure 4.7. Group picture. 
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a. Original image. h. Stego image. 

Figure 4.8. Butterfly. 

a. Original image. h. Stego image. 

Figure 4.9. Basketball player. 
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a. Original image. 

h. Stego image. 

Figure 4.10. Star Wars©. 
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CHAPTER 5: ANALYSIS AND DISCUSSION 

The algorithm was run on a networked SGI workstation running IRIX. The 

algorithm took approximately 1.5-2 wall-clock hours for the 326 x 326 image in Figure 

4.7. Looking at Figures 4.1 and 4.2, we see that the stego images appear visually close to 

the original images on first glance, despite their high difference measure values of 5.78 

and 8.43. Indeed, the stego images almost look identical to the original images from a 

distance. A closer look reveals streakiness on the left side of Figure 4.1 b and in the 

crowd of people above the left shoulder of the man in Figure 4.2b. A closer look at 

Figure 4.2b also reveals that much of the streakiness that exists in the image is masked by 

the large gray-level variations in the region of the image representing the crowd. 

The stego images produced in Figures 4.3b and 4.4b are virtually 

indistinguishable from their original images. This is especially true in Figure 4.3b. 

Because the two images contain few light areas, differences between the stego and 

original images are difficult to see. 

The stego images produced in Figures 4.5b and 4.6b are also extremely close 

visually to their original images. Streakiness can be seen within the "3" in Figure 4.5b, 

but no difference is visually perceptible in Figure 4.6b. Furthermore, the streakiness seen 

in Figure 4.5b would likely go unnoticed by the casual observer. 

The streakiness in the stego images in Figures 4.7b, 4.8b, 4.9b and 4.1 Ob is more 

apparent. Each stego image has a high difference measure (7.84, 7.31, and 9.02 

respectively). In these stego images, the size of the image is important as compared to 

the level of reconstruction used G= 125). The larger the stego image, the more apparent 
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the streakiness. This is to be expected, due to the fact that a lower percentage of rows 

from the original images are being included in the larger stego images. For example, in 

Figure 4.10,326 - 125 = 201. Thus, there are 201 rows where message data can 

potentially be stored. In Figure 4.1, there are only 24 such rows. 

One idea for future analysis is to compare the average LI measure to the 

difference measure. There may be properties of the wayan image "looks" to the eye that 

can be determined through comparison of these two measures. 

An interesting result of our storage algorithm is the evenness in average bits per 

location stored in each image. Almost every image averaged between 3 and 4 bits of 

message data per storage location. This measure of bits per storage location could be a 

useful measure for future exploration of the algorithm. There does not appear to be any 

correlation, however, between the value of the average number of bits stored per image 

location and the value of the corresponding difference measure. 

We believe the storage algorithm in Chapter 3 to be useful for authentication 

purposes. Using this algorithm, there are three keys needed to authenticate a stego 

image: 1) the original image, 2) the level ofreconstructionj, and 3) the order in which the 

data was placed within the image (raster-scan, raster-scan on a rotation, etc). Without the 

original image and the level of reconstruction used to store data, it would be very difficult 

for an attacker to claim the image as their own. Even if another mark was embedded 

within the image via some other technique, it could be proven that the stego image was 

altered. Since we know which rows of the original image are included intact within any 

particular reconstruction and which ones are not, and since we know what was stored 

within a reconstruction, we have two pieces of evidence to validate our ownership of an 
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image. Unfortunately, this technique may not work as well as a standalone technique. 

Some trusted third party that could record the level of reconstruction and the original 

images would be necessary. 

Another way this technique could be used is as an authentication tool between 

two parties. If a person intercepted an image being used for communication between two 

people and compromised it, proving that the image was compromised would not be a 

difficult task. Because an attacker would not know the level of reconstruction used in the 

storage of the message data, he or she would have to attack the stego image as a whole. 

However, if a recipient knows the original image and the level of reconstruction, he or 

she can check to make sure that rows that should be included from the original image in a 

particular level of reconstruction are identically reproduced in the stego image. If they 

are not, one can suspect an outside influence. Again, having the original image and 

having the level of reconstruction provide strong authentication tools for any two people 

trying to communicate. 

One could even store multiple copies of one mark within an image at different 

valid locations. Suppose, for instance, an attack was initiated where the least significant 

bits of an image were randomly rearranged. A person can not only show that the image 

was altered, but may be able to recover the original data stored. Several copies of the 

mark would exist within the stego image that could be compared against one another. 

The copies of the mark could be stored at well-chosen locations, where at most one or 

two of the copies could be affected by such an attack, for instance. Enough copies could 

be embedded to prevent against the majority of those copies being affected by such an 
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attack. Hopefully, this method could be used to correct any errors that might have been 

introduced. 

There is the issue of the "streakiness", or visible appearance of horizontal streaks 

in an image, that can be introduced using this technique. This happens because the rows 

of the original image are included row by row into the reconstruction, and also because 

the values of the stego image are, pointwise, less than the original image values, resulting 

in "darker" (lower) values relative to "lighter" (higher) values surrounding them. Hence, 

the differences between the stego image and the original image also occur row by row, 

resulting in horizontal streakiness in the stego image that can be seen by the eye. 

However, one way to solve that may be to use a different storage algorithm. The data 

being stored may have an effect on how streaky an image looks. If you change the 

storage algorithm, you may be able to eliminate much of the streakiness. For example, 

using a storage algorithm that alternates between rows and columns might overcome this 

disadvantage. 

The neat thing about this algorithm is that an attacker doesn't necessarily know 

where the mark is stored within the image. You can pad the reconstruction with original 

image values in most of its locations except a few, storing your mark or multiple copies 

of your mark in these locations. Again, having the level of reconstruction and the 

original image would be important, since they tell you where you need to look for the 

mark or marks. 

As a covert channel, this technique is not as robust, as a message can be 

compromised in much of the same ways as a message can be compromised if stored 

using any other technique. However, as a method of authentication, we believe that this 
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method can be very strong. It provides two levels of authentication that are difficult to 

get around: the fact that the original image exists and the level of reconstruction. 

Unfortunately, if someone had the original image, they could run a brute force attack to 

find which level the stegoimage was reconstructed to. However, this does not mean that 

they will be able to access the mark, because they don't know the storage algorithm used 

to hide the mark or marks. 
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CONCLUSIONS AND FUTURE RESEARCH 

What can this algorithm be used for? Where can this algorithm be applied? Can 

this algorithm be improved upon? Are there characteristics of the algorithm that have not 

been explored yet? 

One potential use for this algorithm could be the transformation of images into 

covert channels. Many countries have limits on the use of cryptography, but web pages 

are widespread. One party could maintain a web page where he or she posts stego 

images, the original images coming from different locations. If the intended recipient of 

a message knows the locations of the original images and the level of reconstruction used 

for each image, he or she could read messages posted on a web page in Denmark from his 

or her PC in Alaska. Messages could be transmitted across the world. 

Potential exists for using techniques from image processing, such as smoothening 

algorithms, to lessen the streaky effects seen in the stego images. Given the streakiness 

produced by the algorithm, the use of the algorithm alone as a watermarking technique 

may not be effective for some images. This could be due to the irregularities in an image, 

how bright or dark an image looks to the eye, or other characteristics of an image that 

may make our algorithm ineffective on that image. However, with digital smoothing 

techniques, some of the streakiness may be eliminated. There may exist a technique that 

could be applied to a stego image to reduce the streakiness and at the same time preserve 

the image quality. The only restriction on the technique would be that it would have to 

be a technique that was invertible. A non-invertible technique would jeopardize the 

ability to recover stored information from the stego image. An invertible smoothing 
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technique along with the algorithm may produce images that are closer to the original 

images. 

An interesting question arises regarding the inclusion of layers in particular 

reconstructions. Can an image be analyzed prior to execution of the reconstruction 

algorithm to predict which layers will be included in a particular reconstruction and 

which won't? Suppose we could run an image through another algorithm to predict 

which layers would be included and in which order. We could then predict where 

streakiness would occur by looking at the rows that would not be included in a 

reconstruction. An image may not be useful as a covert channel if, for instance, 

streakiness would occur in consecutive rows, as such streakiness might be visually 

apparent within a stego image. 

Another question arises from the discussion above. If we can predict which rows 

will be included within a reconstruction, can we construct images so that we know which 

layers will be included in which reconstruction before the layers are even computed? 

Can we compose images that include only the rows we choose? Instead of tailoring our 

message data to an image, we could then tailor an image to our message data. We could 

compose images that work best for the data we wish to hide. Is it even possible to 

manipulate an image that already exists by manipulating pixel values, for instance, to 

rearrange the order oflayers included in a particular reconstruction? We could then take 

images off of the web, adjust the image before running the algorithm, and produce the 

best stego image for a particular reconstruction. 

Still another, even more powerful application could come from the ability to 

compose images that included only the layers we choose. We could compose images in 
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which we would not even have to hide data, but instead use the order of inclusion of rows 

in a reconstruction to transmit an image. Suppose our message could be translated into a 

decimal string, like 2 4 67 98 3 for instance. If we could compose an image that included 

these layers as the fIrst 5 layers of the image, we could pass our message through the 

reconstruction instead of creating a stego image. We could simply post the image and tell 

an intended recipient the level of reconstruction to examine in order to retrieve the entire 

message. The message could be an encrypted message as well. We could then use the 

encryption algorithm as an additional key. 

The major weakness of this algorithm is the streakiness produced in the stego 

images. The streakiness is inherent in the algorithm, as the algorithm produces 

reconstructions that get closer to the original image row by row as you compute higher 

and higher levels of reconstruction. The storage algorithm always hides one bit less of 

data per location than what is predicted by the C matrix. A better storage algorithm could 

reduce the streakiness produced. Another weakness of the algorithm is its image 

dependence. The idea of rank is discussed in [17], which provides a method of predicting 

what level of reconstruction will produce the original image. We saw from our results 

that different images contain different amounts of space for storage. This could be a 

strength of our algorithm, however, as more properties of the algorithm are proven. 

However, since certain desirable properties have not been proven to exist yet, we must 

assume that the image dependence is a weakness. 
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